
-T

I A Model of Sequence Extrapolation

PHILIP LAIRD
ARTIFICIAL INTELLIGENCE RESEARCH BRANCH

RON SAUL
RECOM TECHNOLOGIES, INC.

PETER DUNNING
AMPEX CORPORATION

I

NASA Arnes Research Center
Artificial Intelligence Research Branch

M/S 269-2

Moffett Field, CA 94035-1000

Technical Report FIA-93- 12

May, 1993

A Model of Sequence Extrapolation

Philip Laird* Ronald Sault Peter Dunning
A.I. Research Branch Recom Technologies, Inc. Ampex Corporation

NASA Ames Research Center
Moffett Field, CA 94035-1000 (USA.)

Redwood City, CA. 94061

Abstract

We study sequence extrapolation as an abstract learning
problem. The task is to learn a stream-a semi-infinite
sequence (SI, s2,. . . , s,, . . .) of values all of the same
data type-from a finite initial segment (SI, SZ, . . . , sm).
We assume that all elements of the stream are of the
same type (e.g., integers, strings, etc.). In order to r e p
resent the hypotheses, we define a language for streams
called elementary stream descriptions and present an
algorithm that learns in the limit elementary streams
over an extensive family of data types. The complexity
of the.algorithm depends on the type and on a stream
property known as the delay. In general the complexity
is exponential or worse, but for streams with bounded
delay over freely generated types the algorithm runs in
time polynomial in the size of the examples. Sample size
analysis is difficult, but for streams of delay 2 over a p
plicative pairs, we calculate exactly the sample size re-
quired in the worst case to identify the stream uniquely.
This bound helps explain why sequence extrapolation
requires so few examples compared to statistical learn-
ing.

Introduction

Learning from experience to predict sequences of dis-
crete symbols is a fundamental class of learning prob-
lems. Characteristic of such problems is that the order
of the examples is an integral part of the learning prob-
lem; hence concept-learning methods based on indepen-
dent random sampling do not apply. In this paper we
consider the problem of sequence extrapolation, where
the task is to form a rule for computing the n’th value
of the sequence, g!ven a finite number of its predeces-
sors. As a motivating example, try to state a simple rule
that accounts for the following sequence of strings and
use it to predict the next string: *?, ! **??, ! ! * ! **???,
! ! !*! !*!**?????,
Extrapolation problems apply to many types of data:
strings, integers, trees, alphabetic letter sequences, and
so on. One finds that many of the same techniques
for finding patterns apply regardless of the data type.

*Email: laird0ptolemy.arc.nasa.gov
Email: saul0ptolemy. arc. nasa . gov

To appear in COLT ‘ 9 3 Proceedings.

1

Another feature of extrapolation problems is how few
examples seem to be required in order to determine the
rule. For example, sequences governed by polynomial
functions f(n) = ein’ are learnable after only 1 + 1
values. This stands in contrast to the very large sample
sizes required for statistical learning problems.

The main result of this paper is an algorithm that
extrapolates many sequences (including the example
above) over a large class of data types. Easily under-
stood and implemented, the algorithm improves the as-
sortment of ad hoc techniques used heretofore. We have
proved the correctness of the algorithm and studied its
complexity. Our analysis also explains in general terms
what properties determine the minimum number of ex-
amples necessary to identify the rule.

While not currently an active research area, sequence
extrapolation has in the past been the subject of re-
search for psychologists and computer scientists. Psy-
chologists have examined in some detail the way hu-
mans infer rules for Thurstone sepuencessequences of
alphabetic letters (e.g., ‘ ‘ A C B D C E.. . ’ ’) in which
the alphabetic ordering provides the fundamental rela-
tionship from which the rule is formed. Programs that
implement models of human performance on this task
have also been used to test cognitive theories (e.g., [6]).

Over the years a number of programmers have tried to
write powerful sequence extrapolation programs. For
example, Pivar and Finkelstein [lo] described a Lisp
program that extrapolates integer sequences based on
the so-called method of differences. Marcel Feenstra
(cited in [2]) later extended the method with some clever
heuristics and was able to achieve an “I&” of about 160
on a published test. Evidently the method of differ-
ences is promising for extrapolating integer sequences
but hard to extend to data types other than integers.

Noteworthy work in artificial intelligence on sequence
extrapolation includes the little known but interesting
thesis by Persson [9] and the paper by Hedrick [5]. Pers-
son’s approach was to seek a method for automatically
constructing a new representateion in which the problem
reduces to a known or easy case. Hedrick used semantic
nets to chart relationships among objects in an effort, to
find a method applicable to sequences of objects over

several types. Dietterich and Michalski [3] described a
program called SPARC/E to play the game Eleusis, in
which the next element in a sequence is a set of object,
not a unique object. Later this work was extended and
generalized in [SI.

A recurring theme in past research is that sequence-
extrapolation algorithms should be type independent,
with a type-dependent part reflecting differences among
data structures. Our results are perhaps the first
to capture this intuition formally: Using concepts
from algebraic type theory, we have separated the
type-independent and type-dependent aspects and con-
structed an algorithm in which the type is a parameter.
Extrapolation is not equally easy for all types, however,
and our analysis shows that a fundamental property of
types-whether or not they are freely generated-makes
a big difference in the complexity of the algorithm. Also
significant, however, is a property of the stream itself:
the number of previous elements required to predict the
next one. We call this the delay, and show that the
complexity may be exponential in the delay.

We want our extrapolation algorithm to apply to many
data types. The types we define are universal algebras
with some additional restrictions. For simplicity we con-
sider only types of a single sort, but extension to the
many-sorted case is straightforward.

Let 3 be a finite set of symbols representing operations,
where each symbol f E 3 is assigned a nonnegative
integer (its arity), and the subset 30 of atoms (symbols
of arity zero) is nonempty. The set E of expressions
generated by 3 is the free algebra generated by 30 and
closed under the formal operations 3.

The operations of arity zero are called atoms or gener-
ators. For example, i f f is an operation of arity 2 and
a and b are atoms, then a, b, and f(f(a, a), b) are a few
of the expressions in E.

A type D over 3 is a family of congruences, Le., equiv-
alence classes on E compatible with the operations 3.
Thus if di and ei are equivalent expressions (1 5 i 5 n)
and f is an n-ary operation, then f (dl , . . . , d,) is equiv-
alent to f(e1, ..., en).
Examples of familiar data types are:

e Strings over the alphabet A = { a , b } , where the
only operator (apart from constants a and b) is
the associative binary function 0 concatenating
two strings. The two expressions (a 0 b) 0 c and
a 0 (b 0 c) are equivalent strings since the string
operation is associative.

e Dotted pairs over the set A = {a, b} . The operator
(e) makes a pair out of two expressions. Typical
expressions include a, b, (6 b) , (a (b a)), etc.

e Non-negative integers generated from {0,1} by the
binary operators + (addition) and * (multiplica-

tion). Both operators are associative and commu-
tative.

e Thurstone domain: The letters A , B , . . . , Z to-
gether with the constructors successor and prede-
cessor, e.g., successo4A) = B and predecessor(B) =
A.

Let k be the following partial ordering on the expres-
sions E: the minimal elements are the generators, and
if y = f(z1,. . ., 2,) for some operation f E 3, then
y k zi for i 5 n. This ordering relation extends to
the elements of the type D: if 2 and y are expressions
and [z] and [y] denote their equivalence classes, then
[y] k [z] whenever y k z. On D, k need not be a
partial ordering.

Definition 1 A type D is said to be constructive if k
'on E extends to a partial ordering on D.

Strings with concatenation generated by a finite alpha-
bet, the non-negative integers with addition generated
by 0 and 1, and the set of ordered trees (lists) gener-
ated by a finite set of atoms under the action of the o p
erations cons and append are all examples of construc-
tive types. The non-negative integers with addition and
multiplication are not a constructive type: 1 = 0+1 and
0 = 1 x 0, so that 1 k 0 2 1. Neither is the Thurstone
domain, since ordinarily we think of A as the successor of
Z; but by pairing each letter with an index counting the
number of "wraparounds"-e.g., successor(Z1) = Az, we
can handle Thurstone sequences with contructive types.

The domain of dotted pairs-probably the simplest non-
trivial constructive type-plays a fundamental role in
our model. Combinators and ordered binary trees are
common applications of this data structure.

A constructive type is said to be freely generated if each
value can be constructed from the generators by ex-
actly one sequence of operations. Pairs, for example,
are freely generated, but strings and naturals are not:
the string abc can be constructed (ab)c or a(bc), and 3
can be constructed as (1 + 1) + 1 or 1 + (1 + 1).

Finally, we assume that types are represented so as to
be effectively distinguishable. For example, there ran
be no confusion between the integer 123 and the st,ring
"123".

Streams

A stream is a semi-infinitesequence (S I , s ~ , . . .) of values,
all of the same type. The first element s1 is callrtl the
head, and the stream (sz, sg, . . .> is called the fa i l .

The operations for a type D extend naturally to st reams
of the same type-e.g., if S = (SI,. . .) and T = (t l , . . .)
are streams and f(,) is an operation, then f (S , T) =
(f (s l , t l) , . . .) is a stream. The constant streanis a =
(a, a,. . .), where a is a generator, are stream oprrations
of arity 0.

In order to formalize sequence extrapolation as Iratn-
ing a stream, we define a representation langriagr for

2

S = (a IT)
T = [S’,U]
S’ = s
u = a

(4
Figure 1: Example elementary descriptions.

streams. In describing the language, we shall adopt the
convention that uppercase letters (S, T, etc.) denote
the names of streams, lowercase Roman letters without
subscripts (a, b, etc.) denote atomic expressions, and
Greek letters (a, p, etc.) denote arbitrary expressions.
The i’th value of the stream A is denoted by ai, and
similarly for other stream symbols.

Definition 2 An elementary description (of type D)
of a stream S is a block-structured list of one or more
equations. The block has one of the following forms:

(initial-value form) S = (a I T) , where a is an
atom of type D, and T is a stream name different
from S. This equation is followed by an elementary
description of T . (Intuitively the atom a represents
the head, and T the tail stream.)

(functional form) S = f(T1,. . .,Tk), where f is
an operation of arity k 2 0, and the symbols x
are distinct stream names different from S. This
equation is followed by elementary descriptions of
TI , . . . , Tk. (Intuitively this represents the stream
S as a function f of the streams Ti;..)

(equality jorm) S = U , where U is the name of a
stream in the parent hierarchy of S (see below).
(This defines the stream S recursively in terms of
another stream V .) I

In the initial-value form, S is said to be the parent
stream of T; likewise in the function form S is the parent
stream of each (1 5 i 5 k) . The parent hierarchy of a
description T (or E, etc.) consists of S, the parent of S,
its parent, and so on. A stream U named in an equality
definition of S must belong to the parent hierarchy of
S.

As a simple example, the single equation S = a is an ele-
mentary description. (Recall that atoms are functions of
arity zero.) It denotes the constant stream (a, a, a, . . .).
The description in Figure l(a) represents the stream
S = (a, [a, a], [[a, a], a], . . .) of type pair. Over the nat-
urals with addition, the description in Figure l(b) de-
scribes the Fibonacci sequence, F = (1, l, 2,3 ,5 , . . .).
The language can be made more economical by allow-
ing backward references to parent streams in the initial-
value and functional forms. We can then eliminate
one equation from the stream in Figure l(a). writing
T = [S, U] . We formally adopt the more restricted form
in order to simplify the reasoning about the language.

On occasion, where formality is less of an issue than
clarity, we may use such “improper” backreferences.

Before we provide a semantics for elementary descrip
tions, we must place additional restrictions on the lan-
guage. Otherwise we may suffer circular descriptions
such as S = f (T) , T = S.

Definition 3 Let S be an elementary description for a
stream, and let W be a stream name defined within the
block S. The relative delay A(S, W) of W relative to S
is defined as follows:

0 A(S,S) = 1;

0 If S = (a I T) , then A(S, W) = 1 + A(T, W).

0 If S = f(T1,. . ., Tk) (k > 0) and W is defined
within the block Z, then A(S, W) = A(Z, W). I

Definition 4 Let S be an elementary description
for a stream. The delay in the description S is
max{A(S, W) I Wis defined within S).

Definition 5 An elementary description for a stream
S is called proper if for every equality form Si = U in
the block, A(U, Si) > 1.

Intuitively the delay is the number of previous values
upon which each successive value depends, plus one.
(The “plus one” is for technical reasons.) In the ex-
ample in Figure l(a) above, the delay in S is 2. For the
family of Fibonacci numbers defined in Figure l(b), the
delay of F is 3 since A(F, If) = 3 is maximum over all
the symbols defined in the block F. Both are proper
descriptions. The description S = f (T) , T = S is not
proper since A(S, T) = 1.

Proper elementary descriptions have a well-defined se-
mantics that assigns as a model a stream [q to every
stream symbol S:

0 If S = (a I T) , then s the stream whose head
is a and whose tailst

0 If S = f(T1,. ..,Tk), then [SI is the stream

0 If S = U (an equality form), then [SI is [VI .
f(BT11,. - * 1 BTkl).

Theorem 6 A proper elementary description S has a
unique model stream. If the description S is not proper,
it may have one model, no models, or many modpis.

3

(The proof can be made by induction or with a fixpoint
argument .)

For example, in Figure l(a),
[q = (0 1 ,..., t n , . . .)
[q = (tl,... , t n,...)

[S'] = (si,. * .,s;, . . .)
= I[sl

[VI = (u1, ..., 21, ,...)
= (a,a, ...)

= ([si, u11,. . ., [sl,, 4,. . .)

Over the non-negative integers the description X = Y +
2, Y = X, 2 = 0 can be modeled by any stream X over
the type. But if we change the description of 2 to 2 = 1,
then X has no model over the type.

Finally we call a stream S of elements of type D an ele-
mentary stream of type D if there is a proper elementary
description whose model is S. ES denotes the class of all
elementary streams. The delay of an elementary stream
S is the least k such that S is representable by an el-
ementary description with delay k. ES(k) denotes the
family of elementary streams with delay k.
Henceforth all streams under discussion will be pre-
sumed to be elementary and all descriptions, proper.

Summarizing, we have defined a limited family of data
types, a language for describing streams over those
types, and a semantics for the language. We shall
model sequence extrapolation as the problem of learn-
ing a stream description, g-iven an initial segment of the
stream. The length of the initial segment is the samples
size.

How Many Examples Are Needed?

Recall the stream S = (a , [a, a], [[a,a],a], . . .) of type
pair used in example above. Suppose we are told that
this stream is in ES(2). How many descriptions of delay
two or less are consistent with these first three valued?
With a bit of reflection we can convince ourselves that
the only consistent description is that given in Figure
l(a) or one that is semantically equivalent. There is
no stream St of delay two beginning with these three
values that later differs from S on some other value.
If, however, we remove the restriction that the delay
is two, then many different descriptions beginning with
these same three values can be given.

Just as for statistical concept learning, the complexity
of the learning problem for streams depends on both the
minimum sample size and the search for a consistent de-
scription. Unlike statistical concept learning, however,
the minimum sample sizes seem to be much smaller.
While working with sequence extrapolation, the authors
have often been surprised by how few examples are re-
quired to determine a stream description of smallest de-
lay, regardless of type. Evidently the sequential ordering

'We shall use the terms values and examples
interchangeably.

of the examples severely constrains the number of can-
didate descriptions. For statistical concept learning, the
combinatorial dimension [I, 41 of the hypothesis family
characterizes quite well the way examples constrain the
number of consistent concept descriptions. Finding an
equally satisfying way to characterize these constraints
for sequence learning presents a challenge for computa-
tional learning theory.

Definition 7 Let S be a class of elementary stream
descriptions. We say that S is m-distinguishable if, for
any two inequivalent stream descriptions A and B in S,
there exists an i , 1 5 i 5 m such that ai # bj. S is said
to be exactly m-distinguishable if it is m-distinguishable
but not (m - 1)-distinguishable.

If the class S is m-distinguishable, then any algorithm A
that finds an elementary description consistent with the
first rn values of a stream can be turned into a learning
algorithm for the class. The algorithm first obtains rn
values and then calls A.

We have found the task of calculating the minimum
sample size to be difficult. For the special case of pair
types, we have the following modest but interesting re-
sult:

Theorem 8 Over pairs let ES(2; h) be the family of
elementary streams of delay at most two for which the
first element has height h or less.2 The family ES(2; h)
is exactly (h + 3)-distinguishable.

A sketch of the proof is appended.

Note that this is an exact bound on the worst-case sam-
ple size. h + 3 examples suffice for all delay-2 streams,
and for every h one can exhibit a stream whose first el-
ement has height h and for which there are at least t,wo
descriptions consistent with the first h + 2 values.

As a corollary, if one begins the extrapolation process
with the n'th value of the stream instead of with the
first, the required sample size is greater by a factor of
only a polynomial in n. The reason is.that, whereas
the sizes of successive elements can grow exponentially,
their heights increase only linearly; and the theorem
shows that the height is what determines the sample
size.

Based on our experiences, we conjecture that over pairs,
the family ES(h; h) of elementary streams with delay at
most k is (1 + k + h)-distinguishable, where h is the
height of sk-1.

The Extrapolation Algorithm

We present an algorithm that searches for elementary
descriptions consistent with the examples seen so far.

'Viewing pairs as binary trees, we say that an atom has
height zero, and the pair CY,^] has height h([a,/3]) = 1 +
max(h(a), h(P)).

4

Our algorithm keeps many active hypotheses for the in-
put stream and eliminates hypotheses as soon as they
conflict with the input examples.

The key to the algorithm’s efficiency is the following
recursive representation for sets of hypotheses. Let S be
an input stream we want to identify. A hypothesis for S
has a type, a confirmed length (equal to the number of
elements of S with which the hypothesis has agreed so
far), and one of the following formats:

initial-value format: the hypothesis has the form
(SI I H), where s1 is equal to the atomic head of
the stream and H is the name of an induction space
(defined below) for the set of possible tail streams.
functional format: the hypothesis has the form
f(a1,. . . , Hk), where f is an operation of arity
k 2 0 and the Hj are the names of induction spaces.
equality format: the hypothesis is simply U, the
name of an induction space.
unknown format: This is a stream variable whose
confirmed length is always zero. It is a placeholder
representing a stream whose name is assigned but
whose first element has not yet been received. We
denote this hypothesis by the symbol 0.

One hypothesis has exactly one of these formats; but for
a stream there may be several hypotheses with different
formats. An indwction space (or space) is a collection
of heteromorphic hypotheses for the same stream. An
induction space shares the same name, type, and con-
firmed length with the stream it represents. In addition
it is assigned a parent induction space.

The algorithm receives the sequence (SI, s2,. . .) of val-
ues of a stream S and incrementally constructs an in-
duction space of consistent descriptions of S. The algo-
rithm also calls upon an external halting criterion that
determines when to stop and declare success.

Hypotheses for S are developed in the induction space
called MAIN-SPACE, initially consisting of only 0. In
order to ensure that only proper descriptions occur
as hypotheses, the algorithm assigns a relative delay
A(S, T) to each stream T named in the induction space
S or in any of its subspaces, in accordance with Defini-
tion 3. Finally, this algorithm assumes that the elements
in the input stream are presented without any errors.

The output is an induction space of hypotheses con-
sistent with the input stream, from which elementary
descriptions may be extracted.

The Extrapolation Algorithm:

1. Initialize: MAIN-SPACE := (0). The confirmed
length is zero and the name of the space is that of
the input stream (here: S). Its relative delay is 1.

2. For i := 1,2,3. . ., until the termination condition is
true: Let si be the next input value. Set MAIN-
SPA C E := EX TEND(M A IN-SPA CE, si, i) and in-

5

crement the confirmed length of MAIN-SPACE by
one.

3. Output MAIN-SPACE.

The EXTEND Routines. Let H be a space repre-
senting a stream, s an input value, and i 2 1. The
procedure EXTEND(H, s, i) is:

For each H E H, H : = (H - { H }) U
EXTEND-HYP(H, S, i, H).

EXTEND replaces each hypothesis H in the space H by
the set (perhaps empty) of all hypotheses that extend
H to be consistent with the new value s.

The routine EXTEND-HYP(H, s , i , 31) is defined by
cases on the form of H. For each possible form of H ,
it either discards H (if it is inconsistent with the next
value s) or replaces it by all its extensions, obtained
by recursively calling EXTEND for each sub-hypothesis
that is part of H . To simplify the presentation we as-
sume that the type is freely generated; for general types
the algorithm is somewhat more complicated. (See dis-
cussion below.)

Case: H is 0. .
Return the following set of hypotheses, each with a
confirmed length of one:
- The initial-value stream (s I X’), if s is an

atom. The tailstream, represented by the new
induction space HI, is assigned a fresh name, a
confirmed length of zero, and a relative delay
one greater than that of H; it is initialized to
contain only the hypothesis 0.

- The name of every space U such that: (1) u1 =
s, (2) the relative delay of U is less than that
of H, and (3) U is in the parent hierarchy of
H.

- The functional hypothesis f (X 1 , . . . , Xk), k 2
0, provided that3 s = f(q ,..., x k) , f E F,
s # zj for 1 5 i 5 k . Each H j is a new space
initialized to contain only 0 and immediately
extended by calling E X T E N D (X j , x j , 1). 7-l is
made the parent space of each 3cj . The relative
delay of each Hj is equal to that of 3c.

Case: H is an initial-value hypothesis.
Let H = (a I HI); return the space {(a I
EXTEND(7i , 2, i - I))}, or the empty space if this
call to EXTEND returns the empty space. Increase
the confirmed length of H by one.
(Case: H = U, another induction space)
If x = ui, return { H } with a confirmed length of i ;
otherwise, return the empty set.
(Case: H is a functional hypothesis)
Let H = f (H 1 , ..., &), k 2 0. If there exist, no
values 21 ,... Xk such that s = f (z 1 , . .., r k) and

31f the type is not freely generated, there may be rriany
such hypotheses.

s # ti (for any i), return the empty set. Else let
s = f (t 1 , . . . , zk); return, with a confirmed length
of i, the hypothesis f (E X T E N D (H 1 , z 1 , i), . . .,
EXTEND(%, a, i).

Analysis

We summarize some results of our analysis. For sim-
plicity let us continue limiting the discussion to freely-
generated types.

Unlike most algorithms in computational learning the-
ory, the extrapolation algorithm is sufficiently complex
that a formal correctness proof is useful. Correctness
means that, after receiving n input values, the main
space contains only hypotheses consistent with the ex-
amples (soundness), and that if H is a hypothesis con-
sistent with the input examples, H or an equivalent is
represented in the main space (completeness).

We adopt the notation z[i..j] for the subsequence
ti ,..., tj of values from the stream X. If j < i, it
denotes the empty sequence.

The following definition makes precise what we mean
when we say that an elementary description is "in" or
'part of" an induction space. This is needed because
induction spaces are not merely sets of descriptions.

Definition 9 Let S be an induction space, and let D
be a proper elementary definition of a stream SI, con-
taining definitions for the symbols S I , SZ, . . . , s,. We
say that D is part of S when there is an injection u m a p
ping each symbol Si into the spaces named in S such
that a(&) = S and, for 1 5 i 5 n,

0 If Si = (v I Sj), the hypothesis (v I 7) is one of the

0 If Si = f (. . . , Sj, . . .), the hypothesis f(. . . , Tj, . . .)

0 If Si = a (a constant), then the constant hypothesis

0 If Si = Sj (an equality reference), the equality hy-

An important detail is that, if f (H ~ , % z , . . .) is one of
the hypotheses in a space S , and H1 is part of the space
8 1 , and HZ is part of the space 'Hz, etc., then the de-
scription S = f (H 1 , H a . . .) (followed by descriptions of
H I , H z , and any other substreams) is a valid hypoth-
esis. In other words, we may mix and match hypothe-
ses freely from the spaces Hi without having to worry
whether the combination is a valid elementary descrip
tion. This is a result of the context-free property of
elementary definitions: nothing in the block defining
H1 depends on, or refers to, any symbol in the block
defining H2 or other substream named in the functional
hypothesis. We can build this observation into

Lemma 10 If a description D is part of the induction
space S , then D is a proper elementary description.

hypotheses in the space .(Si), and u(Sj) = 7.

is in u(Si), and for each j, u(Sj) = 7j.

a is in the space .(Si).

pothesis u(Sj) is in the set .(Si).

Definition 11 Let Z be an induction space, and let
z[l..N] be the first N values of a stream X (for N 2
0). We shall call Z consistent with z[l..N] if N = 0
and Z = {a}, or if N > 0 and every hypothesis in
Z is consistent with z[l..N]. A hypothesis H in Z is
consistent with 4 1 . 4 if:

0 H = (21 I H) and H is consistent with z[2..N];

0 H = U (an equality reference), and for all 1 5 i 5

0 H = a (a constant stream), and for all 1 5 i 5 N ,

N , ti = ui;

xi = a;

and for all j, Hj is consistent with xj[l..N].
H = f(. . . ,Hj,- .-) , z[l..N]= f (...,zj[I..N],...),

Lemma 12 (SOUNDNESS) Let S be a stream whose el-
ements are presented in sequence to the extrapolation
algorithm. For all N 2 0 , after processing the N'th
element, MAIN-SPACE is consistent with s[l..N].

The proof is essentially an induction on the inductive
hypothesis that, if every H in a space H is consistent
with the stream' values z[i . .N - 11, then every H' in
EXTEND(%, ZN, N - i + 1) is consistent with z[i..~].B

The idea behind the completeness argument is that, af-
ter the first k values of an input stream S have been
presented, every consistent hypothesis with delay k or
less, or some equivalent, is in the induction space for S.

Definition 13 Let S be an elementary stream descrip-
tion with delay D. The r-approximation S(T) is defined
for T 2 0 as follows:

1. If r = 0, S(T) = 0 (the unknown hypothesis);

2. If r 2 D, S(r) = S;

3. I f O < r < D a n d

3.1 S = (v I T), then S(r) = (v I T(r - 1)).
3.2 S = f(T1, ..., Tk), then S(r) =

f (Tl(r) ,..., Tk(r)). (Note: if k = 0, trhen
D = 1, so preceding cases apply.)

3.3 S = U , then S(r) = U (r + A(U, S)).

Example: The 2-approximation to the description

s1 = (1 I SZ)
sz = si +s3

s: = s1
s3 = (1 I Si)
s; = sz

is &(2) = (1 I S2(1)), where Sz(1) = Sf(1) + &(1).
S:(l) = S l (2) since A(&, S i) = 1. &(1) = (1 I Sh(O)),
and Si(0) = 0. These are the hypotheses corresponding
to the definition of S1 as they exist in the induction

6

space after the algorithm has processed the first two
values of SI . After three values, SI(3) = S1 since the
delay of SI is 3.

Lemma 14 (COMPLETENESS) Let be a stream in
ES. For all N 3 0, after the extrapolation algo-
rithm has obtained and processed inputs s[l..N], the N-
approximation to every description of S is part of the
MAIN-SPACE *

The proof is an induction on the confirmed length of
the induction space, based on the following inductive
hypothesis: If Z is a space for a stream X with con-
firmed length n and H (n) is part of Z, then H (n + 1)
is part of EXTEND(Z, z,,+l, n + 1). Since Cl is the 0-
approximation to every description of S, and for each
input value the algorithm extends each approximation
by one, the result follows. I
Theorem 15 (CORRECTNESS) Let S E ES(k) be pre-
sented to the sequence extrapolation algorithm. There
exists an integer m 2 k such that after the first m values
of S have been obtained and processed by the algorithm,
the set of hypotheses with delay at most k that are part
of MAIN-SPACE is semantically equivalent t o the set of
elementary descriptions of S .

PROOF: We may verify that only proper hypotheses are
introduced into the MAIN-SPACE by the algorithm.
By Lemma 10 any hypothesis may be selected from any
induction space to yield a syntactically valid stream de-
scription. Hence every hypothesis that is part of the
MAIN-SPACE can be turned into an elementary de-
scription. The Soundness Lemma ensures that every
description with delay < k will eventually be eliminated,
since such descriptions are necessarily inconsistent with
S. For the same reason every hypothesis with delay
k that does not describe S will eventually be elimi-
nated. The Completeness Lemma says that every k-
approximation to a description of S is part of the space.
Among these are all descriptions with with delay 1, since
such descriptions are their own k-approximations. Since
there are only finitely man hypotheses with delay k or

For a freely-generated type, extracting from an element
z = f (z1 , . . . , zj) its unique functional components zi
is a polynomial-time operation for most types. When it
is, we can show:

Theorem 16 For the family ES(k) over a freely gen-
erated type, the algorithm processes input examples in
time bounded by a polynomial in the total site of the
examples and O(2”).

And in view of the sample-size result, we have:

Corollary 17 The family ES(2) over pairs is learnable
in time polynomial in the size of the first m = h(s1) + 3
examples.

less, the theorem follows. P

Non-freely Generated Types.

The extrapolation algorithm breaks input values si into
functional components Sj = f(sjl,. . . , s i r) in order to
find functio heses. When data types are not
freely gener re may be more than one way to
do so-e.g., the integer 4 can be written 1 + 3 or 2 + 2
or 3 + 1. In such cases the algorithm can be viewed as
non-deterministic: if an external oracle were available to
tell it which functional form A + B was the “right” one,
the algorithm would require no modification. Lacking
such an oracle, however, the algorithm must consider all
possible constructions.

Our approach is retain the single functional hypothe-
sis f(. . . , H i , . . .) but replace each of the spaces Hi by
a tree of spaces representing the ways of constructing
the example. Consider the integer stream (3,4,. . .), for
example. These first two values actually represent six
possible pairs of examples to a functional form like A+ B:
For the left halfstream A = (0 1 , 0 2 , . . .), a1 could be 1
or 2 and 02 could be 1, 2, or 3; and for B = (b l , bz , . . .),
the corresponding values of bl would be 2 or 1 and, for
bz , 3, 2, or 1. Thus instead of the single hypothesis of
the form A + B, we must maintain six. Not all of these
hypotheses will remain consistent with the subsequent
examples.

We cannot give the full algorithm here, but the main
point is that when the data type is not freely generated,
the same algorithm applies with some additional book-
keeping. Naturally, however, the number of hypotheses
grows much more rapidly than it does for freely gener-
ated types. Unless the type has bounded multiplicity-
i.e., for every element there is a bound on the number
of ways it can be factored into components by the basic
operations-the extrapolation algorithm requires space
superpolynomial in the size of the input values, in the
worst case.

Naturally, this does not mean that extrapolating ele-
mentary streams of naturals, strings, and other non-
freely generated types is an inherently hard problem:
some other algorithm, presumably one less general than
ours, may well solve the extrapolation problem effi-
ciently.

Concluding Observations

The main result of this paper is a family of st,reams
and types for which there is a unified algorithm for ex-
trapolating sequences. We have shown how sequence
extrapolation can be treated generally as a problem of
learning a stream description.

Our algorithm is not efficient for types that are neither
freely generated nor bounded in the number of factor-
izations of any element. Note that it does not take into
account any of the theory of the type, i.e., the charac-
terization of its congruence classes-to do so would be
type-specific and hence beyond the scope our present,
objectives. Observing, however, that polynomials of or-
der k are learnable efficiently with only k + 1 valites, we

7

expect that there are interesting cases where incorporat-
ing the theory of a type into our algorithm will lead to an
efficient extrapolation algorithm for that type. Relating
extrapolation to the problem of solving equations over
an algebraic data type may be an approach to deriving
true lower-bound complexity results on the extrapola-
tion problem for specific types.

Constructive types are a reasonably generous family,
but streams over non-constructive types ought to be
learnable as well. For example, the family of streams
that are polynomial functions with integer coefficients
of the stream N= (1,2,3, ...) is learnable, but such
streams cannot be directly represented as elementary
streams over a constructive type because subtraction
renders the data type non-constructive. As currently
written, the extrapolation algorithm can get into infi-
nite loops for non-constructive types.

Sample-size analysis offers a number of challenging
problems. Without the powerful statistical convergence
theorems that have been so effective in statistical learn-
ing models, we resort to arguing by cases; the result-
ing proofs quickly become complex and unappetizing.
In essence this means we lack any deep understanding
about why so many hypotheses are eliminated by so few
examples.

The elementary description language itself, while ex-
pressive enough for many purpow, is still rather weak.
We have limited initial values to atoms in this paper
only in order to simplify the reasoning about the al-
gorithm; our implementation does not impose this re-
quirement. By contrast, the block-structure require-
ment that equality forms may refer back only to their
parent streams is necessary for the efficiency of the ex-
trapolation algorithm and of the algorithm for selecting
meaningful descriptions from the final induction space.
In the course of our research we explored a number of
other stream representations that turn out to be equiv-
alent in expressive power to ES, and settled on the one
defined in this paper because it yields an efficient algw
rithm. Still, we see considerable interest in discovering
other stream representations with efficient learning al-
gorit hms.

Everyone has doubtless experienced the sudden increase
in confidence that accompanies discovering a simple rule
to account for a lengthy series of observations. Con-
fidence continues to increase rapidly with the number
of successful predictions, and at some point confidence
in the hypothesis may even exceed one's confidence in
the data. As part of this work we developed a Bayesian
model of confidence [A that applies, not just to sequence
extrapolation, but to a variety of predictive learning
problems. This model leads to an algorithm for se-
quence extrapolation in the presence of noisy examples.
An interesting property of extrapolation from unreliable
data is that, unlike statistical learning from independent
random events, errors early in the sequence are poten-
tially more significant than errors later on.

Theoretical problems are entertaining, but our motiva-
tion in conducting this work is primarily a practical one,
and we have implemented the extrapolation algorithm
as a first step in exploring several applications. One of
these applications is inductive programming, the task
of formulating a general concept (function or relation)
from examples and counterexamples. An area of active
research, inductive programming has been applied to
problems in biology, structural engineering, and qualita-
tive modeling, with modest success. Current algorithms
for inductive programming are based on finding minimal
generalizations of the examples, but these methods re-
quire an enormous number of examples and must search
through a potentially huge space of possible generaliza-
tions. At the same time, they disregard much of the
structure available in the examples, structure t,hat is
evident if the examples are arranged in order of com-
plexity or size. In many cases that we have studied
the number of examples required decreases by two or
three orders of magnitude when sequence extrapolation
is combined with generalization. Sequence extrapola-
tion also suggests some new approaches to fold-unfold
program transformations and to task scheduling in par-
allel programming on scalable architectures.

Acknowledgments

The authors thank Peter Friedland, Mike Lowry, Steve
Minton, David Thompson, and Richard Waters.

References
[l] A. Blumer, A. Ehrenfeucht, D. Haussler, and M. War-

muth. Classifying learnable geometric concepts with the
Vapnik-Chervonenkis dimension. In Proc. 18th Sympo-
sium on Theory of Computing, pages 273-282. ACM,
1986.

[2] A. K. Dewdney. Computer recreations. Scientific Anter-
ican, pages 14-21, 1986.

131 T. Dietterich and R. Michalski. Learning to predict
sequences. In R. S. Michalski et al., editor, Machine
Learning: An A I Approach, Vol. II. Morgan Kaufmann,
1986.

Generalizing the pac model for neural
net and other learning applications. Technical Re-
port UCSC-CRL-89-30, University of California, Santa
cruz, 1990.

[5] C. Hedrick. Learning production systems from exam-
ples. Artificial Intelligence, 7:21-49, 1976.

[6] K. Kotovsky and H. Simon. Empirical tests of a theory
of human acquision of concepts for sequential patterns.
Cognitive Psychology, 4:399-424, 1973.

[7] P. Laird. Weighing hypotheses: Incremental learning
from noisy data. Technical report, NASA Axxies Re-
search Center, AI Research Branch, 1993. (to ba avail-
able online from AAAI).

[8] R. Michalski, H. KO, and K. Chen. Qualitative pretlic-
tion: the SPARC/G methodology for inductivrly tle-
scribing and predicting discrete processes. In {'tirrvnt
Issues in Expert Systems. Academic Press, 1987

[4] D. Haussler.

8

S. Persson. Some Sequence Extrapolation Programs: A
study of representation and modeling in inquiry system.
PhD thesis, University of California, Berkeley, 1966.
Also printed as Stanford University Computer Science
Department Technical Report #
M. Pivar and M. Finkelstein. Au
of induction on sequences. In E. Berkeley and D. Bo-
brow, editors, The Progmmming Language LISP. Infor-
mation International, Inc., 1964.

Appendix: Outline of the Proof of
Theorem 8

Let S = (81, s2,. . .) be an ES(2) stream over pairs. We
argue first that the description of S is determined up
to equivalence by its first rn = h(s1) + 3 values. Then
we exhibit streams for which this number of values is
necessary.

Following is a useful lemma whose proof is not difficult:
Let S be a stream of delay at most k; if the first k values
of S are all equal, then S is a constant stream.

The proof of the theorem is by induction on the height
h(s1) of the first example. For h = 0, assume that
the first element SI is an atom a. We claim that 3
examples suffice to determine the definition of S up to
equivalence-i.e., if there is a stream T of delay at most
2 whose first 3 values are the same as those of S, then
any definition for S is equally a definition for T.
Suppose s1 = sa. Then by the above lemma S is a
constant stream and its definition is clearly determined
up to equivalence. So assume SI # 4. The form of the
definition is

S = (.] A)
A = ...

where the definition of A depends on 52.

Suppose s2 is an atom b (possibly equal to a). Then
the description of A is A = b. (If b = a, an equivalent
description is S = a.)

Suppose s2 is the pair (a,b), where a # b. Then
the description of A must be a %oris" functional form
A = (B , C) where the description of C is necessarily
C = b. The description of B is either B = S or B = a-
both descriptions are consistent with the first two ex-
amples. The third example will determine which de-
scription of B is correct: if s3 is ((a, b), b), then B = s,
but if s3 is (a ,b) , then B = a. Hence three examples of
the sequence S suffice when s2 is the pair (a, b). More
generally, we can extend this argument by induction on
the structure of s2 to show that the description of A is
determined by 52 and s3.

Before continuing, let us introduce some notation and
terminology. If a stream A is described by the functional
form A = (U,V), the components of A are A, U, V,

and the components of U and V. Such a form can be
visualized as a description tree whose root is labeled A
and whose left and right children are labeled U and V,
respectively. If U is in turn a functional form, it, too,

U is an atom, an equality form, or
, then it is a leaf of the tree. In

Figure 3, part of a description of a stream S is shown
schematically in tree form. The leaf 2 is an initial-
value form (a I A'), where the stream A' in turn yields
a description tree. Since the delay of S is at most two,
the leaves of A' must be either atoms or backreferences
to parents of Z in the description tree for S. We refer
to A' and its components as delayed components of 2
(and the parents of 2). We will adopt the convention
of priming the names of delayed components. Also, we
continue the convention of denoting the examples of a
stream X by 21, 2 2 , etc. Note that if A' is a delayed

. component of S, ai (the first instance of A') occurs as
part of s2, and if we have m examples of S, we have
only m - 1 examples of A'.

Inductive Step. We assume that h(s1) + 3 examples
suffice to identify up to equivalence all delay 2 streams
such that h(s1) < h.

Let S be a stream of delay 2 such that h(s1) = h. Let
m = h + 3. Write SI = (c Y I , ~ ~) , where either h (q) =
h- 1 and/or h(&) = h- 1. The description of S is thus
of the form S = (U, V), where U and V may likewise be
functional forms.

Let us consider the description of U. The description is
a functional form U = (W, X) iff CUI is a pair. In fact,
the description of S can be represented as a component
tree terminating in a non-functional "leaf" stream 2
for each atom a in SI. These non-functional forms are
either initial-value forms 2 = (u I A') or const,ant, forms,
2 = a.

Consider any leaf 2 corresponding to an atom u in SI.
Let 22 be the pair (or atom) in s2 in the position cor-
responding to this a. If the expression SI does not oc-
cur as part of 2 2 , then the description of the stream 2
(including its tailstream) cannot contain any backrefer-
ences to S. Moreover, if this is true for all leaf streams
in the description of U-Le., that they do not contain
any backreferences to S because the corresponding value
in s2 does not contain any occurrences of sl-then U
is a stream of delay 2 whose first value has height less
than h and whose description depends only upon U and
its substreams. Hence by the inductive hypothesis the
description of U is determined by only m - 1 examples.

In particular, if there exists a description of U without
backreferences to S consistent with all m examples, then
that description is determined up to equivalence I)y the
first m - 1 examples

Therefore let us assume that there is at least one leaf
component 2 of U whose first value 21 is an atorn (I

and whose second value 22 contains within it si. The
description of 2 must be 2 = (a I A'), followed t)y the
description of A'. In general, the description of A' will

9

Figure 3: Stream with h = 2 requiring 5 examples.

Z X

Z= <a1 A'>

A
U' V'

Figure 2: Structure of S.

be a "tree" of functional forms, but we know that at
least one component B' of A' (or perhaps A' itself) sat-
isfies b', = SI. Thus B' = S is a hypothetical description
of B' consistent with s1 and SZ; B' = (Ut, V') may be
another hypothesis, where U' and V' are the names for
the left and right components of B, respectively. Ac-
cording to our assumptions, u: = ul and vi = VI.

In m examples of S there are m - 1 examples of the
delayed component B' . If these m - 1 examples are suf-
ficient to eliminate either of the two hypotheses for B',
then we have no problem. Nor do we have a problem
if these hypotheses are equivalent and therefore consis-
tent with m- 1 examples. Let us consider, however, the
possibility that both hypotheses for B' remain consis-
tent with m - 1 examples of B', but that later one or
the other hypothesis turns out to be inconsistent with
an example of B'.
In particular, if, for some i, 1 5 i 5 m - 1, either
u: # ui or v: # vi, then the hypothesis S for B' will be
eliminated because it is inconsistent with the value si+l.
If, moreover, S should be eliminated as a hypothesis for
all delayed components of U like B', then the only viable
hypotheses for U will depend entirely on substreams of

U, with no backreferences to S. In this case, by the
inductive hypothesis, these rn - 1 examples suffice to
determine U up to equivalence. The only remaining
case, therefore, is where u: = ui and vi = vi for all
i 5 m - 1, for some delayed components of U like B'.
Thus we need to show that if, after m examples of S,
we still have two consistent hypotheses for B', then they
must be equivalent.

The consistent hypotheses for U without backreferences
to S are determined uniquely up to equivalence by m - 1
examples. Part of such a hypothesis is the description
B' = (U',V'). Since U' = U is consistent with the
examples, any hypothesis for U' is equivalent to this one.
Note that V' = V is not a possible hypothesis, since V
is not in the parent hierarchy of VI. However, it can be
argued that V' must be equivalent to V. Thus the two
hypotheses B' = S and B' = (U',V') are equivalent.
Having shown that the description of U is determined
(up to equivalence) by m values, we can apply the same
argument to V by symmetry. This completes the proof
that streams of delay 2 are m = h + 3-distinguishable.

To show that they are exactly h(sl)+ 3-distinguishable,
we construct for arbitrary h a sequence SI, . . . , sm-l
such that there are at least two inequivalent hypotheses
consistent with all m - 1 examples.

The construction, while not difficult, is too lengthy to
give here. We provide as examples the construction for
h(s1) = 0 and h(s1) = 2.

For h(s1) = 0: The stream

s = (a , (a , a), . . .)
has four distinct consistent descriptions:

S = (. / A)
A = (B , C)
B = S o r a
C = S o r a

Hence two examples do not suffice to determine its de-
scription.

For h(s1) = 2: The first 4 examples of S are in Figure
3 above. One can verify that S has four distinct consis-
tent descriptions. Hence four examples do not suffice to
determine its description.

10

